作者:[美] 斯科特·佩奇 Scott Page
翻译:贾拥民
出版社:浙江人民出版社
出版时间:2019年12月
ISBN:9787213095436
[product_description]
内容简介
工作中,你在团队中是不是不可替代的人?
爱情上,为什么异地恋的相聚能够带来很大的幸福感?
游戏中,选择什么样的策略才能在各种游戏中立于不败之地?
现实社会中,为什么很少有女性成为CEO?为什么披头士的歌曲会那么流行?
……
关于这些问题的正确答案,都可以用斯科特·佩奇新书《模型思维》中的模型来回答。斯科特·佩奇是风靡全球的“模型思维课”主讲人,有超过100万各行各业的人反复学习并从中受益。新书《模型思维》讲解了24种模型,从线性回归到随机漫步,从博弈论到合作,涵盖学习、工作、生活等方方面面——这些有趣的模型可以把任何人变成天才。
芒格说:“要想成为一个有智慧的人,你必须拥有多个模型。”这是一个数据爆炸的时代,数据充斥着我们的工作与生活,但仅拥有数据是远远不够的,必须学会让数据说话。模型就是让数据说话的秘诀,模型将帮助我们所有人从掌握信息提升到拥有智慧。
本书中的24种模型就是一个应对复杂世界的思维工具箱。各行各业、各种需求的所有人都可以根据此书建立专属于自己的思维工具箱,成为一个多模型思考者。它将帮助你整理数据、提取信息、去伪存真,在决策时让你知道选择什么样的模型,选取一个模型还是几个模型。而这是现代高手必备的一种大智慧。
书摘 · 插画
[美] 斯科特·佩奇 Scott Page
超过100万用户的“模型思维课”主讲人。密歇根大学复杂性研究中心“掌门人”。圣塔菲研究所外聘研究员。曾出版《多样性红利》一书。
以对社会科学多样性和复杂性的研究和建模面闻名。具体研究方向包括路径依赖,文化、集体智慧、适应和社会生活的计算模型。
2011年当选美国艺术与科学学院院士,获得2002年的IGERT奖、2001—2006年的生物复杂性项目SLUCE奖和2013年的古根海姆奖。
[info_1]
这是一本关于模型的书。我在书中用简洁的语言描述了几十个模型,并解释该如何应用它们。
模型是用数学公式和图表展现的形式化结构,它能够帮助我们理解世界。掌握各种模型,可以提高你的推理、解释、设计、沟通、行动、预测和探索的能力。
本书提倡多模型思维方法,应用模型集合理解复杂现象。本书的核心思想是:多模型思维能够通过一系列不同的逻辑框架“生成”智慧。不同的模型可以将不同的力量分别突显出来,它们提供的见解和含义相互重叠并交织在一起。利用多模型框架,我们就能实现对世界丰富且细致入微的理解。本书还包括了一些正式的论证,阐述了如何对现实世界应用多模型框架。
本书非常实用。多模型思维具有十分重要的实用价值。运用这种思维方式,你就能更好地理解复杂现象,就能更好地推理。你将会在职业生涯、社区活动和个人生活中表现出更小的差距,做出更加合理的决策。是的,你甚至还可能会变得更有智慧。
25年前,像本书这样讲解模型的著作主要是供教授们和研究生们研究商业、政策和社会科学所用的,金融分析师、精算师和情报界人士也是潜在的读者。这些人都是应用模型的人,他们也是与大型数据库关系最密切的人,这并不是偶然。不过到了今天,关于模型的书已经拥有了更多的读者:广大的知识工作者们。由于大数据的兴起,他们现在已经把模型作为日常生活的一部分了。
如今,用模型组织和解释数据的能力,已经成了商业策略家、城市规划师、经济学家、医疗专家、工程师、精算师和环境科学家等专业人士的“核心竞争力”。任何人,只要想分析数据、制订业务发展策略、分配资源、设计产品、起草协议就必须应用模型,哪怕是做出一个简单招聘决策,也要运用模型思维。因此,掌握本书的内容,特别是那些涉及创新、预测、数据处理、学习和市场准入时间选择的模型,对许多人都有非常重要的实际价值。
使用模型来思考能够带给你的,远远不仅仅是工作绩效的提高。它还会使你成为一个更优秀的人,让你拥有更强的思考能力。你将更擅长评估层出不穷的经济事件和政治事件,更能识别出自己和他人推理中的逻辑错误。有了这种思维方式,你将懂得辨识什么时候意识形态取代了理性思考,并对各种各样的政策建议有更丰富、更有层次的洞见,无论是扩建城市绿地的建议,还是强制药物检测的规定。
所有这些好处都来自与多种多样模型的“亲密接触”,幸运的是,我们用不着一下子掌握千百种模型,而只需先掌握几十种就足够了。本书给出的这些模型就为你提供了一个很好的出发点。
它们来自多门学科,其中包括许多人耳熟能详的囚徒困境博弈模型,逐底竞争(Racetothe Bottom)和关于传染病传播的SIR模型,等等。所有这些模型都有一个共同的形式:它们都假设一些实体,通常是人或组织,并描述他(它)们是如何相互作用的。
本书所讨论的模型可以分为三类:对世界进行简化的模型、用数学概率来类比的模型以及人工构造的探索性模型。无论哪一种形式,模型都必须是易处理的。模型必须足够简单,以便让我们可以在模型中应用逻辑推理。例如,我们讨论了一种传染病模型,这个模型由易感者、感染者和痊愈者组成,可以给出传染病的发生概率。利用这个模型,我们可以推导出一个传染阈值,也就是一个临界点,超过这个临界点,传染病就会传播。我们还可以确定,为了阻止传染病传播,需要接种疫苗人数的比例。
尽管单个模型本身可能就已经相当强大了,但是一组模型可以实现更多的功能。在拥有多个模型的情况下,我们能够避免每个模型本身所固有的局限性。多模型方法能够消除每个单个模型的盲点。基于单一模型的政治选择可能忽略了世界的一些重要特征,如收入差距、身份多样性以及与其他系统的相互依赖关系。1有了多个模型,我们可以达成对多个流程的逻辑推理,可以观察不同因果过程是如何重叠和相互作用的,也拥有了理解经济、政治和社会世界复杂性的可能。
而且,我们在这样做的时候并不需要放弃严谨性,因为模型思维能够确保逻辑的一致性。由此,推理将建立在扎实的证据基础之上,因为模型需要用数据检验、改进和精炼。总而言之,当我们的思维得以在多个逻辑上一致、处在通过了经验验证的框架中时,我们更有可能做出明智的选择。
大数据时代的模型在当今这个大数据时代,像本书这样一本讨论模型的书可能看上去有些不合时宜。现在,数据正以前所未有的维度和粒度急速地涌现出来。过去,消费者的购买数据只能以每月汇总表的形式打印出来,而现在却可以与空间、时间信息及消费者“标签”一起实时传输。学生的学习成绩数据,现在也包括每一份作业、每一篇论文、每一次测验和考试的分数,而不再仅仅是一个期末总成绩了。过去,农场工人也许只能在每月一次的农场会议上提出土壤过于干燥的问题,而现在,他们却能够用拖拉机自动传输以平方米为单位的关于土壤肥力和水分含量的实时数据了。投资公司要跟踪数千只股票的数十种比率和趋势,并使用自然语言处理工具来解析文档。医生则可以随时提取包括相关遗传标记在内的患者记录。
仅仅在25年以前,大多数人获得的知识只能来自书架上的几本书。也许你工作的地方有一个小型图书馆,或者你家里有全系列的百科全书和几十本参考书。学术界、政府和私营部门的研究者则可以利用大型图书馆的馆藏资料,但是他们也经常不得不亲身前往查阅。就在20世纪末21世纪初,为了获得必要的信息,学者们仍然不得不在卡片目录室、缩微胶片阅览室、图书馆书架以及私人收藏家的“宝库”之间来往穿梭。
现在,这一切都发生了颠覆性的变化。几个世纪以来一直受到纸张束缚的知识内容,今天已经以数据包的形式在“空中”自由流动了。关于此时此地的实时信息也是如此。以前,新闻是刊载在报纸上的,最高以每天一次的频率送到我们手上;而现在,新闻却是以连续的数字流形式流入我们的个人设备。股票价格、体育赛事比分、关于政治经济事件和文化事件的新闻,全都可以实时查询、实时访问。
然而,无论数据给我们留下的印象如何深刻,它都不是灵丹妙药。我们也许可以通过数据了解到已经发生了什么和正在发生什么,但是,由于现代世界是高度复杂的,我们可能很难能理解为什么会发生这种情况。更何况,经验事实本身也可能是误导性的。例如,关于计件工资制的统计数据往往会显示,工人每生产一件产品获得的报酬越高,他们生产的产品就会越少。对此,用一个薪酬取决于工作条件的模型可以很好地解释相关数据。如果工作条件很差,导致很难生产出产品,那么每单位产品的工资可能很高;如果工作条件很好,那么每单位产品的工资就可能会很低。因此,并不是更高的计件工资导致了更低的生产率,而是更加糟糕的工作条件导致了这种结果。
此外,我们社会中的大多数数据,也就是关于经济、社会和政治现象的数据,都只是时间长河上的瞬间或片断的记录。这种数据是不能告诉我们普遍真理的。我们的经济、社会和政治世界并不是固定不变的。在这个十年内,男孩在标准化考试中的成绩超过了女孩,但是下个十年就有可能变为女孩的成绩好于男孩。人们今天投票的原因,可能与未来几十年投票的原因截然不同。
我们需要模型,不然就无法理解计算机屏幕上不断滑过的数据流。因此,这个时代,可能恰恰因为我们拥有如此多的数据,也可以被称为多模型时代。纵观学术界、政府、商界和非营利部门,你基本上无法找到任何一个不受模型影响的研究领域,甚至可以说根据不存在不需要模型的决策领域。麦肯锡(Mc Kinsey)和德勤(Deloitte)等咨询业巨头要通过构建模型来制订商业策略;贝莱德集团(Black Rock)和摩根大通集团(JP Morgan Chase)等金融业大公司要利用模型来选择投资,州立农业保险公司(StateFarm)和美国好事达保险公司(Allstate)等公司的精算师要借助风险校正模型来给保险单定价。谷歌公司的人力资源部门要利用预测分析模型来为超过300万求职者进行评估。各大学和学院的招生人员也要建立模型,以便从成千上万的申请入学者当中选出合格的新生。
美国行政管理和预算局(Office of Management and Budget)通过构建经济模型预测税收政策的影响。华纳兄弟公司通过数据分析模型评估观众对电影的反应。亚马逊公司开发机器学习模型向消费者推荐商品。由美国国家卫生研究院(National Institutes of Health)资助的研究团队建立了人类基因组学的数学模型,用于寻找和评估癌症潜在的治疗方法。盖茨基金会使用流行病学模型设计疫苗接种策略。甚至运动队也都使用模型来预测选秀结果和交易机会,并制订比赛策略。例如,芝加哥小熊队(Chicago Cubs)之所以能够在经历了一个多世纪的失败后赢得世界职业棒球联赛的冠军,就是因为很好地利用了模型去选择球员、设计比赛策略。
对于使用模型的人来说,模型思维的兴起还有一个更简单的解释:模型能够让我们变得更聪明。如果没有模型,人们就会受到各种认知偏差的影响:我们会对近期发生的事件赋予过高的权重、会根据“合理程度”分配概率、会忽略各种基本比率。如果没有模型,我们处理数据的能力就会受到极大的限制。有了模型,我们就能澄清相关假设且更有逻辑地进行思考,还可以利用大数据来拟合、校准、检验因果关系与相关性。总之,有了模型,我们的思考会更有效。有证明表明,如果让模型与人面对面直接“竞争”,模型将会胜出。