魔鬼物理学 1:隐藏在日常生活背后的物理学知识

【预购】魔鬼物理学 1:隐藏在日常生活背后的物理学知识

售价
RM39.20
优惠价
RM39.20
售价
RM49.00
已售罄,请联系客服【轩轩】~
Unit price
per 
节省20%
运费将在结账时计算,详情请查阅【商品配送与邮费细节

作者:[美] 詹姆斯·卡卡里奥斯

出版社:中信出版社

出版时间:2018年02月

ISBN:9787508684130

*此为预购书籍,到货时间为6-8个星期(约2个月)。
*若现货书籍与此书籍一同下单,则会等书籍到齐后才安排配送。
*下单前请查阅【注意事项】的栏目以及自行斟酌,若能够接受再进行购买。

编辑推荐

从早晨的阳光射进你的房间,到结束繁忙的一天关灯入睡,恍然间你会发现自己就置身于一个奇妙的物理世界中。生活中常见的电子设备都可以成为我们学习物理知识的教具,就这样,你的生活与物理学紧紧联系在一起。

 

物理学并不只是抽象的公式和名词,它更是你日常生活的一部分。

 

电动牙刷是如何充电的?导航仪是如何准确定位的?冰箱为什么能制冷?飞机为什么能在天上飞?这些你想过或者没想过的问题,这些物理老师可能也答不上来的问题,你都能在这本书里找到答案。

 

其实,电动牙刷的充电原理与电磁感应有关,导航仪通过计算信号的传输时间和速度来定位,冰箱的制冷原理与蒸汽散热的原理正好相反,飞机能够飞起来主要归功于机翼的特殊设计……

 

 

内容简介

《魔鬼物理学1》是“魔鬼物理学”系列丛书的一本,主要从日常生活中随处可见的电子设备出发,讲述我们身边的物理学。物理世界不只有黑洞、引力波、相对论、希格斯玻色子……电动牙刷、导航仪、冰箱、飞机等背后也隐藏着奇妙的物理学原理。《魔鬼物理学1》告诉你,学物理不只是背公式、建模型、做习题!生活中的物理到处可见,漫画书里也有,观察生活的点滴、看看漫画书就能把物理学懂!《柯克斯书评》《书单》《华尔街日报》《出版人周刊》好评推荐!

书摘 · 插画

詹姆斯·卡卡里奥斯

美国明尼苏达大学物理学与天文学教授,畅销书作者。他是凝聚态物理学领域的一位实验物理学家,研究范围非常广泛,涉及纳米材料和神经系统中的随机共振分析等。由于在科普方面做出的杰出贡献,他曾被美国物理学会和美国科学促进会授予相关奖项。

书摘 · 插画

第2章
开车进城去!

 

你乘坐电梯来到公寓大楼的地下车库,走向自己的汽车——一辆油电混合动力汽车。你的钥匙扣上挂着一个无钥匙遥控器,只要按下按钮就可以打开锁住的车门。进入汽车以后,你在方向盘前坐好,发动汽车向车库出口开去。在车库出口处,你减慢车速,一个传感器识别出你车中的电子钥匙,自动为你打开了车库门。

 

从本质上来看,汽车是一种把势能转化为动能的机器。在内燃发动机中,势能表现为化学能,这种能量储存在汽油分子中。在电动汽车中,势能来自电化学电池。而油电混合动力汽车既装有内燃发动机,又配有电动机1,这种汽车的设计目标是将两种能源的优势最大化,同时让其劣势最小化。燃油汽车加满一箱油后可以跑很远的距离,但这种汽车的每公里油耗指标不理想,还会产生有害气体。电动汽车则更加环保、高效,但是每次充满电后的行驶距离有限,因为其电池的能量密度较低。如果只考虑正常情况下的驾驶需求,汽车只要装一个小型发动机就可以了(这样的发动机在油耗方面效率更高)。但是,如果车辆需要在高速路上加速或者爬陡坡,小型发动机将无法为车辆提供足够的动力。上述情况虽然不常有,但却是驾驶者可能遇到并且必须应对的重要情况,因此,为了让这种更小、更高效的发动机在特殊情况下仍能产生足够的动力,油电混合动力汽车把以电池供能的电动机作为次要能量来源。这样一来,油电混合动力汽车不仅靠更高效的发动机降低了每公里油耗,而且还不用付出牺牲加速性能的代价——因为在车辆加速的时候,电动机可以起到辅助作用。

 

然而,站在一名物理学家的角度看,每辆汽车都是靠电能驱动的。不管让车轮转动的能量来自那里,从本质上来看,电动汽车、燃油汽车,甚至是靠蒸汽机驱动的古董车,它们的能量归根结底都来源于电。

 

在正常情况下,原子是电中性的(既不带正电荷,也不带负电荷)。然而,电中性的原子是不能和其他电中性的原子形成化学键的。如果我们让两个原子靠得非常近,它们的电子旋转轨道就会发生重叠。带负电的电子会互相排斥,使得两个原子彼此远离并且各自独立。要想让两个原子结合在一起形成一个分子,就必须克服这种排斥力,因此必须找到一种额外的吸引力来抵消电子之间的排斥力。原子间的所有键都依赖于电所产生的吸引力,这种吸引力能让两个原子保持“在一起”的状态。在一个汽油分子中,原子之间的键叫作“共价键”,共价键通常来说非常牢固,想让共价键断裂,就必须施加相当大的能量。当汽车发动机中发生燃烧反应时,汽油分子的碎片会重新组合起来,由于共价键的强度很大,所以这个过程会释放出相当大的能量。

 

还有一种化学键叫作“离子键”,电池中储蓄的能量就来自离子键。如果原子所带的电子数目比正常数目少或者多,原子就变成了“离子”。在一个“阳离子”中,绕原子核运动的带负电的电子数目少于原子核中带正电的质子数目。如果电子的数目大于质子的数目,我们就会得到一个“阴离子”。电池是一种靠离子来产生电压的设备。一个典型的电池可以让离子在两个金属棒之间移动(这两个金属棒被称为“电极”或者“终端”)。电池的两个电极通常都浸泡在某种液体中,这种液体可以是酸性的(比如硫酸),也可以是碱性的(通常是氢氧化钾),它使电池一极上的原子带上电荷,从而形成离子。如果我们选择适当的金属作为电极,再选择合适的化学液体,就可以让带负电的离子堆积在一个电极处,而让带正电的离子堆积在另一个电极处。我们在液体中放置一个起分隔作用的挡板,让离子待在相应的电极处,并防止阳离子与阴离子在液体中互相结合放电。当我们用一根导线把电池的两极连在一起时,导线两端的电势差使得导线中的电子远离电池的阴离子极,而流向阳离子极。于是,这根导线中就产生了电流。我们可以利用这种电流来做机械功,比如驱动一个电动机。

 

当我们利用电池在电路中产生电流时,电极中存储的离子就会发生移动,而电池液中的化学反应可以继续为电池的两极提供正负电荷。但最终,电池液中的反应物会耗尽,到那时,电池将无法继续保持额定电压,这个电池也就“没电”了。幸运的是,今天的电动汽车配备的都是可充电电池。

 

用电池来存储电能的另一个局限性在于,电池的金属电极能够容纳的带电离子数量是有限的,这是把电池作为汽车的唯一能量来源的一个很大的劣势。和电池的能量密度相比,存储在汽油分子化学键中的能量密度要大得多。我们要做的就是用某种方式获取这些能量,并用这些能量来驱动汽车。

 

一个典型的汽车发动机通常有4~8个气缸,每个气缸的顶部都有一个洞,与一根管子相连,通过这根管子可以向气缸注入各种不同的化学蒸汽。气缸的侧壁非常坚固,顶部是固定的,底部是一个可以上下滑动的金属板(这个金属板被称为“活塞”)。一个燃烧周期共有4个步骤,前两个步骤是向气缸中注入汽油蒸汽和氧气,并向上推动活塞,压缩气缸中的汽油蒸气和氧汽的混合物。被压缩的汽油分子和氧分子温度升高,具有更大的动能。当温度足够高的时候,汽油分子就会与氧分子发生化学反应,表现为燃烧现象,此时混合蒸汽的温度恰好比这个临界温度低一点儿。当燃烧周期的第三个步骤开始时,发动机会为上述系统提供一个触发能量,这种触发能量的具体形式是:火花塞产生电弧,点燃高温的汽油蒸汽。随着燃烧反应的发生,汽油分子中的化学键断裂,形成新的化学键。这一系列过程的结果是:反应后的化学物质的动能比燃烧之前要高得多。这些速度更快的分子冲击气缸内壁,施加给活塞一个强大的压力,推动活塞向下运动。在燃烧周期的第四个步骤,混合蒸汽(包括被点燃的汽油与氧气的混合物,以及气缸中未反应的汽油蒸汽)被推出气缸,通过另一根管子以尾气的方式被排放掉,此时气缸回到初始状态。

 

当我们驾驶汽车的时候,汽车的发动机不断重复上述4个步骤,活塞上下滑动的动能通过一种设计巧妙的机械联轴器转化为汽车行进的动能。在汽车中,有一根杆一头连接活塞顶部,另一头与一个圆盘的边缘相连。活塞推动这根杆上下运动,杆驱动圆盘旋转,圆盘又使车轮滚动起来。

 

为什么汽油的燃烧会产生能量?一个汽油分子中包含一条碳原子链4,这些碳原子通过共价键连接在一起,就像一根手链上的珠子一样,而氢原子则通过化学键与碳原子相连。如果一个分子中所有成键原子的总能量低于这些原子本身的能量之和,这个分子就是稳定的。这种较低的结合能来自于各原子内电子的量子力学作用,在结合能的作用下,共价键分子中的原子就能连接在一起而不分离。如果向分子提供一个比上述结合能更大的能量,分子就可能被“打散”为许多分子碎片。这些分子碎片会与其他原子结合,产生新的分子。新分子的能量低于各个原子分开时的能量之和,随着新分子的形成,这些原子进入了一个势能更低的新状态,这个过程所释放出的能量会加快化学物质的反应速度(使这些物质的动能增加),增加的这些动能就叫作“热”。发生燃烧反应时,不同的分子会释放出不同数量的动能。20世纪初,四冲程燃油汽车之所以能够最终取代蒸汽机汽车以及电动汽车,原因之一就在于,在质量相同的前提下,汽油是能量密度最高的燃料之一。

 

在某些混合动力汽车中,电动机和汽油发动机同时工作,一起为汽车的运动提供动能。还有一些混合动力汽车则采用另一种设计:在同一时间内,要么电动机工作而汽油发动机不工作,要么汽油发动机工作而电动机不工作。当汽车发动的时候,电动机负责供能;随着汽车达到巡航速度,汽油发动机取代电动机为汽车供能。有的混合动力汽车靠汽油发动机驱动发电机,再让发电机给电池充电;有的混合动力汽车是在每次刹车时对电池进行充电。在后一种情况下,车轮的转动动能被转移到发电机上,发电机再给电池充电。不管采用上述哪一种设计,这些混合动力汽车的电池都不需要连接外部电源就能够充电。